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Introduction
An important challenge in the analysis of gene expression data from complex tissue 
homogenates measured with RNA-sequencing (bulk RNA-seq) is to reconcile cellu-
lar heterogeneity or unique gene expression profiles of distinct cell types in the sam-
ple. A prime example is bulk RNA-seq data from human brain tissue, which consists of 
two major categories of cell types, neurons and glia, both of which have distinct mor-
phologies, cell sizes, and functions across brain regions and sub-regions [1–3]. Failing 
to account for biases driven by molecular and biological characteristics of distinct cell 
types can lead to inaccurate cell type proportion estimates from deconvolution of com-
plex tissue such as the brain [3].

Abstract 

Deconvolution of cell mixtures in “bulk” transcriptomic samples from homogen‑
ate human tissue is important for understanding disease pathologies. However, 
several experimental and computational challenges impede transcriptomics‑based 
deconvolution approaches using single‑cell/nucleus RNA‑seq reference atlases. Cells 
from the brain and blood have substantially different sizes, total mRNA, and tran‑
scriptional activities, and existing approaches may quantify total mRNA instead of cell 
type proportions. Further, standards are lacking for the use of cell reference atlases 
and integrative analyses of single‑cell and spatial transcriptomics data. We discuss 
how to approach these key challenges with orthogonal “gold standard” datasets 
for evaluating deconvolution methods.
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